HP-GAS: prediction of Human Protein protein interactions based on automatic feature engineering and Genetic Algorithm driven Stacking method
HP-GAS is a software for prediction of human protein protein interactions based on graph,
evolutionary and sequence features, and automatic feature engineering which utilizes genetic algorithm (GA) and automatic correlation based selection.
HP-GAS uses the ensemble of models generated by machine learning (ML) algorithms as a method for PPI prediction,
where automatic ensembling of ML algorithms was driven by supervized GA and unsupervized correlation filtering.
HP-GAS software was written in JAVA language and is available as standalone application, which can be executed on any operating system containing Java Virtual Machine. Minimum system requirements for HP-GAS are: RAM 1 GB; Disk space 1 GB. In order to run the HP-GAS program it is necessary to install Java Runtime Environment 8 (JRE), which can be found for Windows, Linux, Mac OS and Solaris systems at: Java SE Runtime Environment 8 - Downloads Please read the documentation for detailed information about the HP-GAS software and it's usage. HP-GAS is a free software released under Apache License, Version 2.0. HP-GAS application with required files and documentation is provided bellow. The HP-GAS_Sequences.zip file contains 15,650 human sequences, with UniProt identifiers and entrynames in FASTA format, for which the predictions can be calculated. If using HP-GAS, please cite: Sumonja N, Gemovic B, Veljkovic N, Perovic V. (2019) Automated feature engineering improves prediction of protein-protein interactions. Amino Acids. DOI:10.1007/s00726-019-02756-9. |
||
© 2014-2022 VINCA-180 |